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Abstract—Human sperm motility analysis is a key method in
assessing male fertility. It was suggested that performance of
automatic sperm motility analysis systems can be enhanced by
adopting multi-target tracking algorithms developed originally
for radar technology. We review and appraise several target
tracking algorithms operating on synthetic and actual sperm
images and compare their performance. Simulations and ob-
servations of images of real sperm cells suggest that the joint
probability data association filter with track-coalescence-avoiding
(JPDA*) outperforms other evaluated algorithms. This is also the
result obtained on images of swimming tadpoles.

Index Terms—human sperm tracking, sperm motility, perfor-
mance evaluation, tracking algorithm

I. INTRODUCTION

Measures of sperm motility have been used for decades to
evaluate male fertility in clinical andrology. Several techniques
are being used for estimation of sperm motility [1], [2]. The
most common method uses microscopes or cameras operated
by technicians who count sperm cells and assess their charac-
teristics using manual measurements. In this process, sperm
motion quality is appraised visually according to standard
protocols. Another class of widely used tools is computer-
assisted sperm analysis (CASA) systems. CASA systems have
the potential to provide fast, automatic and more objective
sperm analysis than analysis relying on human operation and
were the subject of several studies (i.e., [3]- [4]). These studies
discussed methodologies, algorithms and results of experi-
ments. Some authors ([5], [6]) opined that some commercial
CASA machines are deficient in their ability to dispose track
coalescences, which diminish their ability to perform sperm
trajectory reconstruction. If wrong track reconstruction data
are used in the analysis, values of key kinematic parameters
may not be calculated correctly.

It was suggested ([7] - [9]) that radar tracking algorithms
such as the probabilistic data association (PDA) filter and the
joint probabilistic data association (JPDA) filter have potential
to assist in automatic sperm analysis system. Since achieving
precise ground truth tracks information from video clips of
real sperm swimming is infeasible, a possible alternative is to
apply candidate tracking algorithms to synthetic moving sperm
images, based on mathematical models of sperm swimming.

For this study, we created video simulations of human sperm
motion. We used them to compare four (4) algorithms applied
to automatic sperm analysis. The mean optimal sub-pattern as-
signment (OSPA) distance ( [10]) was used as performance cri-
terion. Four multi-target tracking algorithms were compared;
they are the nearest-neighborhood (NN), probabilistic data
association (PDA), joint probabilistic data association (JPDA)
and joint probabilistic data association with track-coalescence-
avoiding (JPDA*). Performance of different algorithms was
also compared using images of real human sperms and of
swimming tadpoles video clips. Results demonstrated that the
JPDA* outperforms the NN, the PDA and the JPDA algorithms
in these applications.

A. Organization of the paper

Section II describes the swimming models of sperm cells.
These are used to synthesize test images. In section III we use
four algorithms for sperm cells tracking. These are the NN, the
PDA, the JPDA and the JPDA* algorithms. In section IV we
compare the algorithms and show examples of their operations
(on synthetic, real sperm cells and tadpole images).

II. VIDEO SIMULATION OF SPERM MOTION

It is not feasible to compare the accuracy of different
tracking algorithms using real sperm movement video clips,
since ground truth on the exact sperm tracks is not available.
Based on analysis of sperm swimming behavior presented by
[11], we developed video simulations of swimming sperms.
Using this simulation, tracking accuracy of different algo-
rithms can be quantitatively assessed. The sperm movement
video simulations contain four types of sperm motion.

1) Linear: sperm cells with this motion category move in
a “ribbon” pattern path. As shown in Fig. 1 the sperm rolls
side to side by following a ribbon pattern. The center of the
ribbons constitute a straight-line track.

In our simulation, each sperm with linear movement has
a constant path velocity drawn from a Gaussian distribution
N (µl, σ

2
l ).

The relevant variables associated with linear movement are:
• rh : width of ribbon
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• rv : height of ribbon
• θrotation : direction of forward movement
• V : straight line path velocity of ribbon center
• δθln : rate of change in ribbon angle
• xp, yp : x and y coordinate of simulated sperm
• xn, yn : x and y coordinate of ribbon center[

xp
yp

]
= R ∗

[
rv
2 sin(2θln)
rh
2 sin(θln)

]
+

[
xn
yn

]
(1)

where
R =

[
cos(θrotation) − sin(θrotation)
sin(θrotation) cos(θrotation)

]
(2)

Vx = V cos(θrotation) (3)

Vy = V sin(θrotation) (4)

θln+1 = θln + δθln (5)

xn+1 = xn + Vx (6)

yn+1 = yn + Vy (7)
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Fig. 1. Example realization of linear movement sperm track

2) Circular: sperm cells move in a circular pattern which is
modulated by a superimposed sinusoidal movement, as shown
in Fig. 2.

The relevant variables associated with circular movement
are :

• rc : radius of the circular path
• fc : frequency of sinusoid on the circular path
• a : amplitude of the sinusoid
• δθcn : rate of change in angle

xp = [rc + a sin(fcθcn)] cos(θcn) (8)

yp = [rc + a sin(fcθcn)] sin(θcn) (9)

θcn+1 = θcn + δθcn (10)

3) Hyper-active: sperm cells in this category have rapid
random movement in random directions. In our simulation,
they are simulated following Brownian motion. The example
of hyper-active track is shown in Fig. 3.

The relevant variables associated with hyper-active move-
ment are :
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Fig. 2. Example realization of circular movement sperm track

• drx, dry : random displacement along x and y axes follow
a normal distribution N (µh, σ

2
h) .

xp+1 = xp + drx (11)

yp+1 = yp + dry (12)
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Fig. 3. Example realization of hyper-active movement sperm track

4) Dead: dead cells are sperm cells with little or no
movement. These cells are simulated as a scaled Brownian
motion with relatively small speed in our setup. They are
moved primarily by the fluid in which they are immersed.

The relevant variables associated with dead pattern are :
• ddx, ddy : random displacement along x and y axes follow

a normal distribution N (µh, σ
2
h) .

• s : Scale coefficient.
xp+1 = xp + sddx (13)

yp+1 = yp + sddy (14)

III. TRACKING ALGORITHMS

A. Dynamic Model for Sperm Tracking

To track sperm cells we use multiple-target tracking algo-
rithms that process a series of continuous time-lapse images.
They generate tracks which consist of sequence of target state
estimates. The state vector xm of the m-th sperm cell is
defined as

xm(n) = [xm(n), ym(n), ẋm(n), ẏm(n)]T (15)



TABLE I
COMPARISON OF TRACKING ALGORITHMS

Algorithm Relative Performance Computational Complexity Ability of Avoiding Track Coalescence
NN Poor Low Low

PDA Poor Low Low
JPDA Fair Medium Medium
JPDA* Good High High

where xm(n), ym(n) are the 2D target location and ẋm(n)
and ẏm(n) are velocity at frame (time) n. The state model is
assumed as

xm(n+ 1) = Fxm(n) +wm(n) (16)

where the state transition matrix F is

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 . (17)

Here, T is the sampling period and wm(n) is the 4 × 1 zero
mean random process noise vector with covariance matrix

Q = q


T 3

3 0 T 2

2 0

0 T 3

3 0 T 2

2
T 2

2 0 T 0

0 T 2

2 0 T

 , (18)

where q represents the power spectral density of process noise,
which indicates the process noise intensity.

A measurement zm (target position plus noise) is given by

zm(n) = Hxm(n) + em(n) (19)

where the measurement matrix is

H =

[
1 0 0 0
0 1 0 0

]
. (20)

The em(n) represents the 2 × 1 zero mean stationary white
position noise vector with covariance matrix N which is given
by

N =

[
σ2
e 0
0 σ2

e

]
. (21)

B. Operations of the tracking algorithms

The purpose of a tracking algorithm is to produce a reliable
estimate x̂m(n) which would be close to the true position
xm(n) in some sense, for each target. Most current multiple-
target tracking algorithms were introduced originally for radar
applications. Beresford-Smith and Van Helden first applied
radar tracking algorithms to sperm tracking by adapting the
probabilistic data association (PDA) filter to track a single
sperm in clutter [7]. Other multiple-target tracking algorithms
were proposed for sperm tracking in [8]. Sperm tracking
systems use multiple-target tracking algorithms for analyz-
ing a series of continuous time-lapse images, to generate a
tagged temporal sequence of state estimations, i.e., a track,

for each sperm. We compare four (4) algorithms used for
this task: the nearest-neighborhood (NN), the probabilistic
data association (PDA) algorithm, the joint probabilistic data
association (JPDA) and the joint probabilistic data association
with track-coalescence-avoiding (JPDA*). A brief summary
and comparison of these algorithms is shown in Table I which
is based on [16, p.56]. In Table I the JPDA* is described as
having better relative performance and higher computational
complexity than the JPDA, PDA, and NN algorithms.

The nearest neighbor tracking algorithm updates each track
assuming that the nearest measurement to a track is correct
[12]. It is a simple algorithm which is easy to implement.
However, it is not ideal for sperm tracking systems since
it assumes perfect measurement association (one observation
will only be used for each track). This assumption makes the
NN algorithm incapable of dealing with track coalescence.
The PDA filter and the JPDA filter are two commonly used
statistical algorithms based on Kalman filtering. Often they
exhibit better performance than the NN algorithm. In the PDA
algorithm, the posterior association probabilities are calculated
for each validated measurement at the current time, to form
a weighted sum of innovations for updating the target’s state.
The PDA algorithm is not ideal for sperm tracking systems
since it does not consider the existence of other targets in
the clutter. To overcome the drawbacks of PDA, JPDA was
proposed. Unlike the PDA, JPDA calculates the association
probability jointly over all its validated measurements at the
current time to update each track [13].

The JPDA algorithm typically exhibits good performance in
radar applications which have small number of targets in the
environment [13]. However, it suffers from track coalescence
and bias in dense target scenarios [14]. To address some
of these challenges an enhanced version of JPDA, JPDA*,
was introduced in [15]. The superscript “*” represents “track-
coalescence-avoiding.” The key difference between JPDA and
JPDA* is that instead of calculating exhaustively all feasible
joint association events as is done by JPDA, only the best
joint association event is used in computation for each set of
detected targets and set of measurements. As a result, JPDA*
tends to outperform JPDA in dense target scenarios [15].

Based on the literatures it appears that in the environments
that contain small number of targets, the NN, PDA, JPDA
and JPDA* algorithms should have similar performance. The
JPDA* is expected to outperform the others in dense target
scenarios.

Additional details on these tracking algorithms are available



Fig. 4. Comparison of four data algorithm using synthetic videos with 10
sperm cells in a 710 by 710 pixels window

in [16].

IV. TRACKING SPERMS IN SYNTHETIC AND REAL IMAGES

A. Comparison of Data Association Algorithm Performance
with Synthetic Video Clips

Fig. 4 and Fig. 5 show tracking performance of the four
algorithms in two scenarios. Both scenarios share the same
image size (710×710) and frame rate (15 frames per second).
Fig. 4 shows the result of processing images containing 10
moving sperm cells. Fig. 5 shows the result of processing
images containing 200 cells. Each set of video clips contain
10 percent of dead, 10 percent of hyper-active, 30 percent
of circular and 50 percent of linear motion sperm cells. To
evaluate the performance of each algorithm over frame (time),
the mean optimal subpattern assignment (OSPA) distance
metric between estimated and true tracks were calculated
by averaging the OSPA distance over 100 replications. The
OSPA measurement was suggested in [10] as a consistent
assessment of tracking algorithms performance. A smaller
OSPA represents better tracking performance.

All algorithms have similar performance under the sparse
particle scenario as shown in Fig. 4. However, by comparing
Fig. 4 to Fig. 5, we note that with larger number of sperm
cells in the synthetic video clips, the performance difference
among four tracking algorithms becomes more obvious and
all algorithms tend to have larger OSPA distance (more sperm
cells are introduced which will lead to more cell collisions).
Moreover, as time elapses, all algorithms tend to have larger
mean OSPA distance due to a growing number of cell colli-
sions introduced by the movement of sperm cells.

The JPDA and JPDA* algorithms consistently exhibit better
performance than the NN and PDA algorithms in both sim-
ulated scenarios. JPDA* outperforms all other algorithms in
dense sperm cells scenarios since it is capable of reducing
tracking coalescence.

The JPDA* and NN algorithms were also applied to video
recorded from real human semen sample and from tadpole
swimming videos. Human semen samples used in our study
were collected and processed by the In-Vitro Fertilization

Fig. 5. Comparison of four data algorithm using synthetic videos with 200
sperm cells in a 710 by 710 pixels window

Fig. 6. Full screen snapshot of tracking generated by JPDA*

laboratories which located at Penn Fertility Care in accordance
with policies of the University of Pennsylvania [9]. The videos
of semen samples were recorded with resolution of 640 ×
480 at 15 fps and 200×magnification (0.857 µm/pixel). A full
screen representative tracking result generated by JPDA* is
shown in Fig. 6. 100 µm2 representative snapshots are shown
in Fig. 7 and Fig. 8. In these figures, red cross indicates the
location of sperm head and the green line represents the path
that one cell traveled within 1 second. The track number is
shown by the number close to the sperm.

B. Representatie Examples of Real Video Tracking Analysis

Snapshots in Fig. 7 (a) - (d) show the tracks generated by
NN. The results with JPDA* applied to the same data are
shown in Fig. 7 (e) - (h). As shown in Fig. 7 (a) and (e),
the sperms with track number 35 and 37 are close to each
other at the initial point. They ‘met’ with each other halfway
and further collided as shown in Fig. 7 (b) - (c) and Fig. 7
(f) - (g). The performance difference between NN and JPDA*
is revealed after the two sperms separated from each other
as shown in Fig. 7 (d) and (h). The snapshot generated by
NN shows that the sperm with track number 37 was changed
erroneously to a new track (number 87) after the collision.
Sperm with number track 35 also changed to track number
37 at the same time. This outcome demonstrates the inability



of the NN algorithm to handle collision. In contrast, JPDA*
identified and solved the collision situation perfectly as shown
in Fig. 7 (h) that after the collision the sperm cells maintained
the track numbers they had before the collision.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Snapshots of multi-sperm tracking. (a) - (d) Tracking results generated
by NN. (e) - (h) Tracking results generated by JPDA*.

We also applied the NN and JPDA* algorithms to video of
swimming tadpoles which exhibit similar movement as human
sperm. The tadpole swimming video clip was obtained from
[17]. This video clip was recorded with resolution of 1280 ×
720 at 30 fps. Tracking of the swimming tadpoles shown in
Fig.8 (a) - (d) were generated with the NN algorithm. Fig.
8 (e) - (h) show the results generated from the same images
by JPDA* algorithm. The results show similar trends to these
observed in processing human sperm video clips. Tadpoles
with track number 87 and 840 were close to each other and
started to move closer as indicated in Fig. 8 (a-b) and Fig. 8
(e) - (f). Fig. 8 (c) and Fig. 8 (g) show a collision between
these tadpoles. After they separated from each other, the NN
algorithm classified them erroneously. The tadpole originally
with track number 840 changed to track number 1543. On
the other hand, JPDA* still exhibited high performance in
disposing collision situation as shown in Fig. 8 (h); after the
collision, the two tadpoles maintained the same track numbers
they had before collision.

V. CONCLUSION

We compared the performance of four (4) multi-target track-
ing algorithms, namely: nearest-neighborhood (NN), proba-
bilistic data association (PDA), joint probabilistic data associa-
tion (JPDA) and joint probabilistic data association with track-
coalescence-avoiding (JPDA*) by applying them to synthetic
human sperm images, real sperm images, and images of
swimming tadpoles. The JPDA* algorithm met or exceeded
the performance of the NN, the PDA and the JPDA algorithms
in all studied scenarios.
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